
Approximate solution of one-dimensional 
heat diffusion problems via hybrid 
profiles 
S. P. Venkateshan* and N. S. Kotharit 
This paper presents hybrid temperature profiles, a combination of an exponential and a 
polynomial, capable of providing highly accurate but approximate solutions to one- 
dimensional heat diffusion problems by the use of the heat balance integral method. After 
establishing their capability in the case of two test problems, namely, an initially isothermal 
semi-infinite medium subject to either a specified heat flux or temperature at its surface, two 
typical applications are considered. These show that the hybrid profile-heat balance integral 
combination is an excellent approximation that may be used as a first step before launching 
on a numerical solution in cases that do not have available analytical solutions. 
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Introduction 

Despite the fact that numerical solutions of heat diffusion 
problems have become the order of the day, approximate 
methods still retain some fascination. This is evidenced by the 
appearance of papers dealing with these methods in the heat 
transfer literature from time to time.l-13 Of interest to this study 
is the heat balance integral (HBI) method first introduced by 
Goodman. 2 The popularity this method enjoys is due to its 
inherent simplicity and the ease with which fairly complex 
problems can be analyzed. 

In practice, the HBI method involves the approximation of 
the actual temperature distribution by a suitable profile. The 
accuracy of the results depends on the chosen profile. Even 
though an exponential profile has been used in the published 
literature, 9'11':2 the polynomial profile has been used more 
often. Whether all the possibilities have been explored and 
exhausted is uncertain, nor is it certain that the profiles used 
thus far are the most accurate. These uncertainties exist because 
an inherent deficiency of the HBI is that there is no rational basis 
for selecting or effecting an improvement in a chosen profile. 
This has prompted some to look for modifications of the HBI 
method itself, to formulate the problems in terms of the so-called 
modified HBI or the 0-moment scheme 11'12 and the use of a 
second integral of the heat equation. 14 However, this study 
retains the HBI and searches for profiles vastly superior to the 
often used polynomial profiles. 

The search has been successful in discovering new and more 
accurate profiles. A few typical applications demonstrate these 
profiles' capability. 

Preliminaries 

The HBI method has been discussed extensively in the 
literature. Fixing attention on Test Problem 1 (TP1), the case of 
the temperature transient in an initially isothermal semi-infinite 
medium at zero temperature subject to a surface beat flux 
q, = qo t~/2 (see Figure 1), the HBI reeotmizes a penetration depth 
&(t), beyond which the temperature is zero. The governing 
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equation, assuming constant properties, 

a2T aT 
~t ax 2 at 

is replaced by the HBI 

aT d a 
- ~ t  - -  = - -  T d x  

The initial and boundary conditions are specified as 

T ( x ,  O) = T (6 ,  t) = 0 

k a T  
- ~-x x=o=qO e'n 
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Figure I Comparison of hybrid profile with third-degree 
polynomial (HP3 )~ea t  balance integral (HBI) temperature profiles 
with the exact solution for test problem 1 (TP1) 
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where the boundary condition T ( ~ ,  t )=0  has been applied at 
x=6 in the HBI method. In the region 0~<x~<6, the actual 
temperature variation is replaced by an approximating profile. 
Often used polynomial profiles are of the form 

P X 
Pp: T(x,t)= ~ Amy m y=~ (4) 

m = 0  

where the coefficients Am are determined from the boundary or 
auxiliary conditions as needed and the HBI. In the following, 
two kinds of profiles are considered: pure exponential profiles 
(E) and the hybrid profiles (HPp), a combination of an 
exponential and a polynomial. These are defined as 

E: T(x,t)=A1 exp(flly)+A2 exp(fl2Y)+Aa (5) 
p + l  

HPp: T(x, t)=Aoexp([3y)+ ~ Aray m-1 (6) 
m = l  

When applied to TP1, an evaluation of these profiles may be 
based on two criteria: 

(1) The accuracy with which the surface temperature is 
predicted 

(2) The accuracy with which the temperature profile is 
predicted 

Both these comparisons are made with respect to the well- 
known exact solution.l 5 It is to be expected that the parameter/~ 
(or//1 and f12) should play a significant role in meeting these two 
criteria. Apart from the normally satisfied boundary conditions, 
the smoothness conditions at the edge of the penetration layer, 
and the HBI, the parameter fl makes it possible to satisfy an 
extra condition that may be chosen arbitrarily. In particular, it 
is possible that there may be a fl for which the  surface 

temperature is predicted exactly. Simple calculation shows, for 
TP1 with n=O, the case of constant heat flux, the following 
profiles predict a value of 1.1284qo(~t) 1/2/k that is also predicted 
by the exact solution: 

E: /~1 = 1.462, r2 = 0  

HPI: /~ = - 1 . 9 0  

HP3: fl = 1.3 

HP3: fl =0.43 

In view of this, the second criterion may be used to choose the 
best among the four profiles as the suitable profile for this 
problem. Profile comparisons show HPa, fl=0.43 is the best 
profile (Figure 1, n = 0) in this case. The best profile and the 
exact profile are in excellent agreement, being indistinguishable 
from each other, except in a region close to the penetration layer 
where all profiles underpredict the temperature. 

In general (TP1, n ~ 0) it can be shown, for profile HP 3, which 
is chosen as the best candidate, the following hold: 

S 

(O~t) I/2 - -  (1 +n/2) 1/2 

={~-1{1 _~flexp(-fl)-f13/2+[J2-fl~2~-+ fl/2- £ f~1/2 (7) 

[ [exp{fl(y - 1)} - fl ay3/6 + (fl 3 _ f12)y2/2 
T ~ -(/3a/2-fl2+fl)y+(fla/6-fl2/2+[$-l)] 

Tre~f =s [ [fl exp(--fl)--fl3/2 +fl2-[3~ (8) 

Notation 

A Coefficients appearing in the approximating 
profiles 

C Specific heat of the material of the metal film, 
J/kg K 

Fo Fourier number in the metal film problem, 
(~t)'/2 

h 
h A characteristic length in the metal film 

O~mMC 
problem, - - ,  m 

km 

k Thermal conductivity, W/m K 
L Latent heat of sublimation in the ablation 

problem, J/kg 
M Mass per unit area of metal film, kg/m 2 
n Exponent in the surface heat flux variation with 

time (TP1) or the exponent in the surface 
temperature variation with time (TP2) 

q Heat flux, W/m 2 

r T s  i n T P l o r  q s  inTP2  
Tref qref 

s Reciprocal Fourier number based on 

penetration depth, (~t)l/2 

t Time, s 
T Temperature, °C 
x Distance measured normal to the surface, m 
X Thickness of material removed in ablation 

problem, m 
y Nondimensional distance normal to the surface, 

X 

fl,  f l l  , fl2 
Thermal diffusivity, m2/s 
Constants appearing in the approximating 
profiles (hybrid) 

6 Depth of penetration, m 
A Nondimensional penetration depth in the metal 

6 
film problem, 

A' Nondlmensional penetration depth in the 
5 - X  

ablation p r o b l e m , -  
6p 

X 
,~ Nondimensional ablated layer thickness, 

I- ,  

v Latent heat to sensible heat ratio in the 
L 

ablation p r o b l e m , -  CTp 
p Density of medium in the ablation problem, kg/m 
r Nondimensional time in the ablation problem, 

t 

tp 

Subscripts 
c Conductive or characteristic 
f Metal film 
( Nondimensional value (after Zien 12) 
m Medium in metal film problem and also 

0, 1, 2 . . . .  describing the polynomial profile or 
the polynomial part of the hybrid profile 

n Nondimensional value (after Zien t2) 
p Degree of the polynomial or phase change value 
ref Suitably chosen reference value (application 

dependent) 
s Evaluated or specified at the surface 
0 Amplitude factor 
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Tab le  I fl values satisfying the first criterion, the equality of 
surface temperature predicted by the HBI wi th the exact value 

Ts b S 
n - -  fl 

Tref (1 +n/2) 1/2 

0 1.128 1.300 or 0.430 4.266 or 4.418 
1 1.085 - 0 . 2 7 9  or - 2 . 6 8 0  4.407 or 4.231 
2 1.064 - 0.249 or - 4.095 4.309 or 4.085 
3 1.051 - 0 . 2 3 3  or - 4 . 9 4 0  4.254 or 3.934 
4 1.042 - 0 . 2 2 9  or - 5 . 5 6 0  4.213 or 3.809 
5 1.036 - 0 . 2 2 6  or - 6 . 0 1 5  4.181 or 3.677 
6 1.032 - 0.223 or - 6.400 4.169 or 3.573 
7 1.028 - 0.220 or - 6.700 4.153 or 3.470 

q__2_'= p [ 1 - e x p ( - / / ) ]  (10) 
q ~  s [ e x p ( - / / ) + / / -  1] 

T [cxp{ f l (y -1)} - / / y+/ / -1]  (11) 
Ts [exp(- / / )  + / / -  1] 

Table 2 shows//has a single value for which the surface heat 
flux prediction is identical to the exact value. Figure 2 shows, for 
all n, the corresponding temperature profiles are in excellent 
agreement with the exact profiles. 

Having discovered new hybrid profiles of great accuracy, we 
consider two interesting applications. 

a Profile is HP3 applied to TP1. 
b Exact as wel l  as present 
qo~ t  (n+ 1)/2/k(1 + n/2). 

approximation. Tref is given by 
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Figure 2 Comparison of hybrid profile wi th first-degree polynomial 
(HP1)--heet balance integral (HBI) temperature profiles wi th the 
exact solution for test problem 2 (TP2) 

where 

qo(~t(, + l))t/2 
T,u= k(1 + n/2) 1/2 

Table 1 shows // has two values for which the surface 
temperature predicted by the HBI is identical to the exact value. 
Invariably the lower value of//yields the better profile. Figure 1 
shows, for all n, the HP3 approximation with this choice of/ / is  
excellent and provides solutions largely indistinguishable from 
the exact profiles. 

Now consider Test Problem 2 (TP2), wherein the surface 
temperature is specified as Ts = To f'/2, for the case of a semi- 
infinite medium initially isothermal at zero temperature (see 
Figure 2). In this case, the first criterion requires the surface heat 
flux prediction to be identical with that predicted by the exact 
solution. For n=O, the case of a step change in surface 
temperature, only one profile satisfies this criterion, that is, 
H P t , / / =  0.575. The nearest rival is P2, which overprcdicts the 
surface heat flux by 2.3 ~o. In general (TP2, n#0) ,  HPt  satisfies 
the following: 

(~ S - - S  / / [1  - -  e x p (  - -  //)'] ~1/2 (9) 

(c~t)t/2 ---- [( 1 + n)/2] 1/2 - ~ LB-I _ e x p ( -  fl)///+ f l /2 -  l ']J 

A p p l i c a t i o n s  

Trans ient  hea t ing  of  a semi - i n f i n i t e  m e d i u m  across a th in  
par t i t ion  

This problem models the transient heating of a semi-infinite 
solid with a surface coating (say, an electro deposition of a film 
of different metal on a metal sample) or the transient heating of a 
fluid in a thin-bottomed vessel before the onset of convection.16 
Assuming this film or the vessel bottom is made of a good 
conductor of heat, we treat the film as a lumped system having a 
uniform temperature throughout at any time t. The equations 
governing the problem are (see Figure 3) 

dTf 
Metal film: M C - ~ = q o - q c  (12) 

~2T= aTm 
-Medium: ~tm c~x 2 ~t (13) 

with the following initial and boundary conditions: 
Tf= Tm= 0 at t = 0 for all x 

Tm--~0 as x--*oo for all t 

=Tm at x = 0 f o r a l l  t (14) Tf ~ q r  

= - k m T x  m at x = 0  q¢ 

Since HP3 was an excellent profile in the case of TPl ,  the same 
profile is chosen in this ease also. In this application, it was 
found that the value of/l could be chosen either as 1.3 or 0.43 or 
any other value in between (like the va lue / /=  1) for predicting 
the metal film temperature. It can be easily deduced from these 
equations coupled with HBI and HP a,/ /--  1, that the Fourier 
number Fo = (~tt)l/2/h can be obtained as an explicit function of 
the nondimensional penetration depth A = 6/h given by 

(3e-  8) [A2_~ 2A 4 ln(1 + ~ ) 1 1 / 2  (15) 
1~° = 4 (e -  2) ( e -  2) ( e -  2) 2 

Tab le  2 fl values satisfying first criterion, the equality of surface 
heat f lux predicted by the HBI wi th the exact value 

b qs s 
n - -  fl 

qref [(1 +n)/2] I/2 

0 0.798 0.575 3.236 
1 0 .886 - 1.893 3.215 
2 0.921 - 2.902 3.093 
3 0.940 - 3,530 2.972 
4 0.952 - 3 .980  2.861 
5 0 .959 - 4.330 2.766 
6 0.965 - 4.600 2.672 
7 0 .989  - 4 .853 2.603 

a Profile is HP1 applied to TP2. 
b Exact as wel l  as present approximation, qref is given by 
kTot(n- 1)12 [(n + 1 ) / (2=) ]  1/2. 
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Figure 3 Non-dimensional metal film temperature variation with 
Fourier number---comparison of the present approximation with the 
exact solution 

The nondimensinal film temperature is then given by 

Tf (3 -e )  A 2 
- - = - -  (16) 
T~r 3 [1 + A ( e -  2)/2] 

where 

The exact solution to the problem is obtainable by the 
application of Laplace transforms. ~6 Figure 3 shows the 
remarkable accuracy with which the present approximation 
predicts the metal film temperature. 

On the physical side, it is interesting to see, after an initial 
period (Fo~2.5), the film temperature shows a square root 
dependence on time. This means the transient temperature field 
in the medium corresponds to that of TP1 with n--0 for 
Fo > 2.5. For short times, however, the heat capacity of the foil 
becomes important, the conduction into the medium is 
negligible, and the film temperature increases linearly with time 
(parabolic with respect to Fo). 

Ablation problem 

The second application to be treated is the case of ablation 
under a constant heat flux (see Figure 4). The solution proceeds 
in two steps. In the first step, the preablation period, the 
problem corresponds to TP1 with n = 0 and is valid till a time tp, 
at which the surface attains the phase change temperature Tp. 
Use of liP3, fl = 0.43 and HBI leads to the following values for tp 
and 6p, the depth of penetration at onset of ablation: 

t = (  kTp "~2 6=(kTp~(s~  (17) 
P \qo r¢'/2} ~ ~ qo J~rJ 

where r=  1.1284 and s=4.4183. 
For the postablation period, the temperature profile is chosen 

a s  

x - -X  
T=O(y) y = 6 _  x (18) 

where X = 0 at t = t v, and T = Tp at x = X (or y = 0) for all t. The 
HBI and the energy balance at the ablation front can be shown 

to be given by, respectively, 

d6' dX s'g 
r' -d7 + -~ -  = ~7 (19) 

s' q o  
(20) 

6'-kTp \kTpJ dt 

where 
1 

6 ' = 6 - X ,  r '=S°0(y)dy and s '=  (d0/dy) at y = 0  
Tp Tp 

These may be nondimensionalized as 

2=  X A '=  t -;- z=  (21) 
~p % tp 

and integrated subject to the conditions ,1. = 1, A' = 1 at ~ = 1 to 
get 

~. = (z - 1)/rs- r'(A'-- 1) 
(1 + v) (23) 

where 

v=CT n a=rsr'v and b=rs' 

Various profiles 0 were.selected and comparisons with.the 
exact solution 17 showed the best profile for predicting the 
ablation layer thickness is HPa, //=0.43. This is somewhat 
surprising in the light of the earlier discussion of TP2, n = 0, 
where HPI turned out to be the best profile. It appears that, 
though the postablation period corresponds to a constant 
temperature boundary condition at the receding ablation front, 
the profile that does not change its form from the preablation to 
the postablation period is desirable. Fom Figure 4, it is clear 
that the present HBI result is superior to the result of Vallerani, 9 
who used an exponential profile coupled with the HBI. In 
plotting this figure, the variables used by Zien~ 2 have been made 
use of. They are given by 

2. =3.7803(1 +v) -2 ( z -  zip)= 0.8(~- 1) (24) 
T 

1.0 
- -  LAND4U EXACT (tip.Wl&) 

o ZIEN, NIOOIFIEO Hal (.Liif,0.11) 
. . . .  VALLEP.ANI. H l= ('Lip=l) j 

0.0 O PRE.Td[NT, HBI (.LIpSO.~E4.) 
= ~ ,  

/ 0.6 / t 

An 

0.4 - -- / 

~ I g] / / i  

• ] _._~:J I ° - /  

ol)I o.! i to 

Figure 4 Nondimensional ablation layer thickness variation with 
nondimensional time--comparison of present approximate solution 
with other approximate solutions and the exact solution 
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where 

t t (' krp ~' ~,=~ ~lp= ~ and = -  
to = \qo='/' ) 

which is a characteristic time. The present result closely follows 
the exact solution attributable to Landau 17 with the agreement 
being excellent for short times and relatively long times. The 
modified HBI method attributable to Zion 12 is in considerable 
error for short times. On average, the H P 3 - H P 3 - H B I  
combination is a very good representation of the solution. 

Conclusion 

This study has shown the hybrid profiles coupled with the 
conventional HBI are capable of providing highly accurate 
solutions to many typical problems in heat diffusion. Here, the 
applications were limited to cases that had available exact 
solutions. However, the excellent agreement between the 
present results and the exact solutions, in each of the cases 
studied, prompts us to hope that the hybrid profiles should 
provide accurate solutions when used in problems with more 
general boundary conditions. In view of this, it is suggested that 
the hybrid profile HBI combination may be used at least as a 
first step before undertaking a fully numerical solution in cases 
not amenable to analytical solution. 
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